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The self-avoiding walk in a quenched random environment is studied using real- 
space and field-theoretic renormalization and "Flory" arguments. These 
methods indicate that the system is described, for d<d~=4,  and, for large 
disorder for d>  de, by a strong disorder fixed point corresponding to a "glass" 
state in which the polymer is confined to the lowest energy path. This fixed 
point is characterized by scaling laws for the size of the walk, L ~ N ~ with N the 
number of steps, and the fluctuations in the free energy, A f ~  L% The bound 
1/~ - co <~ d/2 is obtained. Exact results on hierarchical lattices yield ~ > ~pore and 
suggests that this inequality holds for d = 2 and 3, although ~ = ~pure cannot be 
excluded, particularly for d=  2. For d>  d c there is a transition between strong 
and weak disorder phases at which ~ = ~pure. The strong-disorder fixed point for 
SAWs on percolation clusters is discussed. The analogy with directed walks is 
emphasized. 

KEY WORDS: Self-avoiding walks; disordered systems; real-space renor- 
realization group; percolation. 

I N T R O D U C T I O N  

In  this p a p e r  we discuss  the  s ta t i s t ica l  m e c h a n i c s  o f  a s ingle se l f -avo id ing  

wa lk  ( S A W )  in a q u e n c h e d  r a n d o m  e n v i r o n m e n t .  Th is  p r o b l e m  has 

a t t r a c t e d  m u c h  a t t e n t i o n  ~1 10) in recen t  years  because  of  its a p p l i c a t i o n  to 

p o l y m e r s  in r a n d o m  media ,  and  because  it is a s imple  bu t  non t r i v i a l  

p r o b l e m  of  s ta t i s t ica l  m e c h a n i c s  wi th  d i sorder .  
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One outstanding question which has generated considerable contro- 
versy for more than a decade is whether or not the end-to-end size 
exponent C, of the SAW in the presence of quenched disorder is different 
from its value for the pure SAW, C0 (often denoted by v in the literature). 
Although this question remains unresolved, several authors have recently 
considered the problem guided by new ideas and methods. In ref. 4, both 
a real-space renormalization method and a field theory were used to 
argue that at the percolation threshold C>C0 for d<6.  Machta and 
Kirkpatrick ~5) studied the field theory describing the SAW in a Gaussian 
random environment and showed that disorder leads to runaway trajec- 
tories in the renormalization group flow. The RG flows were used to 
calculate the leading behavior of moments ( Z  k) of the partition function 
for k ~> 2 and d<  4; however, the limit k--* 0 was not accessible to these 
methods, so ~ could not be determined. Finally, Obhukov (7~ suggested that 
the statistics of SAWs in quenched random media is described by a strong- 
disorder fixed point. Evidence for this comes from the fact that in the field 
theory for d<  4 the parameter characterizing the strength of the disorder 
grows indefinitely under renormalization. This postulated strong-disorder 
fixed point is, however, inaccessible to conventional perturbative 
approaches. Using analogies with directed self-avoiding walks (DSAW) 
with disorder and Flory arguments, Obhukov proposed that C=~o for 
d=  2, but that ~ = C• > ~o for d=  3 where C_ is the wandering exponent for 
the DSAW. Using similar arguments, Honeycutt and Thirumalai (6~ find 
that ~ = 2/3. 

In this paper we investigate the SAW in a random environment using 
various approaches. A real-space renormalization method, exact on 
hierarchical lattices, shows that, at least on these lattices, the statistics of 
the SAWs is indeed controlled by a strong-disorder (or zero-temperature) 
fixed point characterized by two nontrivial exponents, ~ and co. We find 
that ~ is different from the pure value, ~0, on the same lattice. The exponent 
co characterizes the growth of the free energy fluctuations, A f ~  L ~ with the 
end-to end-distance L (by analogy with DSAW, we also define )~ = ~co, such 
that A f ~  N X, where N is the number of steps of the SAW). The real-space 
approach is pursued in Section 2. 

Since we do not have analytic methods which permit us to determine 
the exponents ~ and co, it is useful to obtain bounds on these exponents. 
Chayes et al. (m (CCFS) derived a general bound for disordered systems, 
v >/2/d. The proper interpretation of v for walks in random environments 
is puzzling. If one naively identifies the correlation length with the size of 
the walk, this bound is unphysical for d ~  2. In Section 3 we show that for 
SAWs in disordered environments the exponent C characterizing the size of 
the walk is not the same as the correlation length exponent, but that the 
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two are related according to 1/v = 1/~ - co, which in turn provides a bound. 
This relation between v and the "naive" correlation length exponent should 
be characteristic of zero-temperature fixed points in general (with a non- 
zero thermal eigenvalue). A similar bound can be obtained for the DSAW. 

In Section 4 we consider the problem of the statistics of SAWs on per- 
colation clusters. Using the exact real-space approach, we obtain results 
which contrast with the approximate real-space calculation of ref. 4 and 
suggest that a new strong-disorder fixed point controls the SAW statistics 
at percolation. We then reexamine the field theory of ref. 4 and point out 
some possible difficulties with the original interpretation of this field theory. 

In Section 5 we reexamine the field theory near d =  4 and discuss the 
instability toward strong disorder for d <  4. For d >  4, we find that small 
disorder is irrelevant and that, in addition to a strong-disorder regime, a 
weak-disorder phase exists where the SAW has the statistics of an ideal 
chain. The phase diagram is determined in a 4 + e expansion and the 
exponents of various fixed points are obtained to order e 2. 

Since for the DSAW there is an exact relation, Z = 2 i f •  1, between 
the free energy fluctuations and the transverse wandering, one can also 
wonder whether there is a similar relation between ~ and ~o for SAWs. This 
is discussed in Section 6, where we also present several scenarios (e.g., 
Flory arguments, replica scaling, etc.) leading to predictions for the 
exponents ff and co, and their counterpart for the DSAW problem. 

Throughout  the paper we emphasize analogies with the simpler and 
better understood problem of the directed self-avoiding walk (DSAW) in a 
random medium. (12-14) This model has recently received renewed attention 
due to its importance for understanding the behavior of magnetic flux 
lines in high-temperature superconductors/15~ We shall see that there are 
very close similarities with the DSAW problem, which physically is not 
surprising since by imposing an external field on the isotropic SAW, 
the SAW is stretched and one recovers the DSAW at large length scales. 
In Section 7 we study the crossover from SAW to DSAW using scaling 
or blob arguments similar to those of de Gennes (16) for the pure SAW. 
We find that the extension L of a SAW along a stretching force F is 
L, , .NF (~-~)/(~-z~. By studying the stretched limit, we also argue that the 
singularity of the free energy of a SAW is characterized by a new exponent, 
v ' = ( m - 1 ) / ( e ) - l / ~ ) .  Note that v'=ffo for the pure SAW. A similar 
analysis applied to the DSAW itself yields a simple derivation of the 
relation Z = 2~• - 1. 

The "quenched" problem studied in this work corresponds physically 
to a polymer in an environment in which one or both ends of the chain are 
fixed. The "annealed" problem corresponds to averaging the partition func- 
tion and is associated with a polymer with both ends free which comes to 
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equilibrium in an infinite environment. 3 The quenched and annealed 
problems are qualitatively different. In the annealed problem, the polymer 
finds rare optimal regions in the environment and is compressed into those 
regions. In the quenched problem, the polymer is stretched away from the 
origin in order to find a favorable region. Thus we expect ~q . . . .  bed ~> 
~pure ~ ~ . . . . .  led" While the annealed problem is reasonably well under- 
stood, (2'17'18) the quenched problem is, not surprisingly, much more 
difficult. Although the physical problem of a polymer in a porous material 
such as a gel corresponds ultimately to an annealed average, for many pur- 
poses the quenched average may be more appropriate. The reason is that 
the equilibration times (7'19"2~ required to find the rare optimal regions 
dominating the annealed average may be much longer than experimental 
time scales. On intermediate time scales the polymer explores typical 
environments and is thus better described by quenched averages. 

1. T H E  M O D E L  

We define the finite-size free energy for SAWs in quenched random 
environments as follows. Consider a lattice in a box of volume L a with an 
origin and endpoint assigned on opposite faces of the box. Each SAW, F, 
is confined to the box and goes from the origin to the endpoint. For each 
bond j of the lattice we assign a random energy Ej chosen from a distribu- 
tion p(E). The statistical weight associated with a SAW occupying the 
bond j is then e x p [ ( - E j +  I~)/T], where T is the temperature and kl the 
chemical potential for a single step. Note that for fixed p(E), decreasing T 
amounts to increased disorder while ~t shifts the mean energy. Each 
environment e is defined by a collection of bond energies. The partition 
function for a given e is the sum over all SAWs of the product of the 
statistical weights along the SAW 

Z L = ~  e E n( / ' )+uN(r ) ] /T  (1.1) 
F 

Here E(F) is the sum of the energies along F and N(F) is the number of 
steps in F. From the free energy fL = --T1og ZL we can obtain the thermal 
average number  of steps N - N ( # ,  T, e) for SAWs in a given environment, 

N= -afL/## (1.2) 

3 There is some confusion of terminology here since the environment may be stationary. Since 
the polymer is free to explore all of space, the partition function is self-averaging. Thus the 
statistics of a polymer with free ends in a stationary random environment is given by the 
average of the partition function rather than the average free energy. 
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For a pure system there is a phase transition as a function of the 
fugacity K = e  u/T. When K<Kc, the chain is stretched and N,-~L. For  
K > Kc, -~ ~ L d and the chain is compact. At K = Kc 

N ~  L 1/~-~ (1.3) 

where ~o is the size exponent for the pure system (e.g., ~o = 3/4 for d =  2). 
For  a random environment, we study the configuration-averaged 

number of steps ( N ) .  As we vary #, we observe that ( N )  has a stretched 
phase, a compact phase, and a critical phase at a chemical potential 
iZc(T, p(E)) which depends on the temperature and the statistics of the 
disorder. The size exponent is defined in the critical phase by 

(.,V} = - O ( f L  }/c~ I~ =~, ~ L1/~ (1.4) 

We emphasize that ~ is associated with the quenched problem in which the 
free energy, rather than the partition function, is averaged. It is reasonable 
to assume that ~ also characterizes the size /~ of a SAW starting at the 
origin in a typical environment with a fixed number of steps N on an 
infinite lattice, /5~ N ~. However, the methods of this paper apply to the 
exponent ff as defined in Eq. (1.4). 

2. R E A L - S P A C E  R E N O R M A L I Z A T I O N  G R O U P  

In the real-space renormalization group approach the Euclidean lattice 
of the original problem is replaced by a hierarchical lattice. This approach 
has proven fruitful (21'22) in the study of SAWs in pure environments and 
has also been successfully used in the study of disordered systems such as 
directed walks (23'24) and random spin systems. (25'26) In these situations it 
gives at least qualitatively good results. Here we apply this method to 
SAWs in random media. Consider SAWs on the hierarchical lattice con- 
structed from the unit cell shown in Fig. 1A. At each step in the construc- 
tion individual bonds are replaced by unit cells. If there are n levels in the 
hierarchy, the distance between the endpoints is taken to be L = b n with 
b = 2. The statistical weight Z '  for traversing an n-step structure is a random 
variable which satisfies the recursion relation 

Z '  = Z I  Z 2 + Z 3 Z  4 -~- Z 1 Z 5 Z  4 + Z 3 Z 5 Z  2 (2.1) 

where Z1 ..... Z5 are statistical weights for the five ( n - 1 ) - s t e p  structures 
which comprise the bonds of the unit cell and each term in (2.1) arises from 
a distinct self-avoiding walk across the unit cell. 
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Fig. 1. The unit cells for constructing hierarchical lattices. Self-avoiding walks start at the 
bot tom open circle and end at the top open circle. The length of the bonds between nodes has 
no significance. 
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Combining Eqs. (1.2) and (2.1), we find that IV also enjoys recursion 
relations, 

z ' ~ '  = (.~, + .~ )  z,z~ + (-x3 + N4) Z, Z4 

-[- (N1 + iV5 -~- iV4) Z1Z5Z4 + (iV3 + iV5 -]- IV2) Z3Z5Z2 (2.2) 

where the pair (_Nj, Zj) is chosen from the joint distribution previously 
generated by Eqs. (2.1) and (2.2). It is straightforward to construct similar 
multinomial recursion relations for the other hierarchical lattice shown in 
Fig. 1, although for lattice F there are 65 distinct SAWs and the corre- 
sponding expression is quite lengthy. 

For a pure system (2b the statistical weights reduce to a single fugacity 
variable which satisfies a polynomial recursion relation displaying a phase 
transition at Kc. At K =  Kc we obtain the size exponent ~o according to 

b 1/~~ =- N ' / N  = aK'/~3KI K= X, (2.3) 

For a disordered system we are interested in both the exponent ~ and 
the exponent e9 describing the fluctuations in the free energy, 

2 ~ L2W ( f L )  - ( f z )  2 (2.4) 

One can also define Z -  ogff which characterizes the free energy fluctuations 
as a function of the number of steps in the SAW. To obtain these quan- 
tities, it is convenient to use a Monte Carlo procedure to renormalize the 
joint distribution P(f ,  N). We choose an initial value of #, T and a large 
sample of random energies (usually 100,000) chosen from a given distribu- 
tion. Initially ~V = 1 for each bond. Using the recursion relations, we obtain 
a new sample consisting of pairs of free energies and path lengths. This 
procedure is very similar to that employed in refs. 23 and 24 to study 
directed walks. Those authors considered hierarchical lattices, such as 
shown in Fig. 1D, in which each path has the same number of steps. This 
leads to a trivial size exponent ( =  1 appropriate for directed walks where 
the number of steps in the walk is proportional to the system size in the 
time direction. 

Our first observation is that, for the "two-dimensional" lattices A, B, 
and E the recursion relations flow toward increasing disorder independent 
of the choice of/~, T or the initial distribution. This suggests within the 
real-space approach the idea that SAWs in quenched random environments 
in sufficiently low dimensionality are controlled by a strong-disorder or 
"zero-temperature" fixed points. On the other hand, for the "three-dimen- 
sional" lattice of Fig. 1F the variance of the free energy distribution 
decreases if the temperature is high, but increases if the temperature is 
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sufficiently low. Using the methods of ref. 27, it is straightforward to show 
analytically that weak disorder is irrelevant, so that in the weak-disorder 
phase, the distribution flows to the pure fixed point and ~ = ~o. For the 
hierarchical lattices used here (except for lattice D) the Harris criterion is 
not satisfied (27) because all bonds are not equivalent. In Section 5 we 
examine the lower critical dimension for Euclidean lattices dc above which 
a phase transition exists between the weak- and strong-disorder phases and 
conclude that dc= 4. 

In the domain of attraction of the strong-disorder phase, the variance 
o f f  flows to arbitrarily large values. When the variance of f is very large 
the largest term in the recursion relations almost always dominates and 
one can safely replace Eq.(2.1) by the "zero-temperature" recursion 
relation, 

f ' = m i n { A + f i , f 3 + f 4 , f ~ + f s + f 4 , A + f s + f 2 }  (2.5) 

with similar expressions holding for the other lattices. For a given con- 
figuration, ?~' is given by the sum of the N' along the path corresponding 
to the minimum free energy walk. Since the zero-temperature recursion 
relations are invariant under rescaling of the free energies ( f  ~ )f), we can 
obtain fixed points by rescaling the variance so that it remains fixed under 
renormalization. By varying the initial value of #, the distribution flows to 
one of three strong-disorder fixed points for which the distribution of f is 
invariant under the recursion relations followed by a rescaling. The three 
zero-temperature fixed points, two stable and one unstable, correspond to 
the stretched and compressed phases and the critical point, respectively. 
These phases correspond to the stretched, compressed, and critical phases 
of a SAW on a pure lattice. 

The fundamental difference between the pure phases and the strong- 
disorder phases is that in the former case all SAWs of the same length are 
equally weighted, while in the latter case the ensemble is dominated by the 
minimum energy path. Indeed, because the problem is dominated by a 
strong-disorder fixed point one can conjecture that the exponents can be 
obtained by solving the optimization problem in which the minimum 
energy SAW of N steps starting at the origin is determined on a random 
lattice. It has recently been shown that this optimization problem is NP- 
complete. (45) 

Under the action of the full recursion relations, there is a critical 
manifold which connects the pure critical point and the strong-disorder 
critical point. For a given initial temperature and distribution p(E), the 
critical manifold is obtained by adjusting # to a critical value #c(T, p(E)). 
Our object is to determine the exponents associated with the strong- 
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disorder critical fixed point. If 21 is the required rescaling of the free 
energies at the fixed point, then 

b ~ 21 (2.6) 

while the size exponent is obtained from the ratio 

b 1/~= ( ~ " ) / ( N )  (2 .7 )  

evaluated at the fixed point. The values of ~o, ~, co, Z, and the ratio (/~o are 
given in Table I for one dimension and the hierarchical lattices shown in 
Fig. 1. If we suppose that lattices A, B, and E are reasonable approxima- 
tions to two dimensions, our results suggest that ~ is slightly greater than 
~o and that Z ~ 0.3. For the "three-dimensional" lattice F in the strong-dis- 
order phase we find that ~ is substantially larger (9%) than G0. These 
hierarchical lattice have a fractal dimension d I = log NJ log  b, where Nb is 
the number of bonds in a unit cell which is also given in Table I. Lattices 
B and F were studied for the pure case in ref. 21. 

We note that it is possible to construct hierarchical lattices, such as 
the one shown in Fig. 1C, for which the random exponent is less than the 
pure exponent, i.e., ~ = 0.86 < ~0 = 0.89. The salient feature of this lattice is 
that the long path shares no bonds with the two short paths, whereas the 
short paths share a bond with each other. In comparison to the weighting 
of paths in a pure system, the minimization defined by the zero- 
temperature recursion relations favors those paths sharing fewer bonds 
with other paths. On Euclidean lattices, and faithful representatives such as 
hierarchical lattices A, B, E, and F, it is the short paths which share the 
fewest bonds and for these systems we expect ff 1> ~o. 

Table I. The Quant i t ies to, X- - -wt ; ,  ~, i; o, i ; / i ;  o, a n d  df for the Hierarchical 
Lattices S h o w n  in Fig. 1 and for  One Dimension a 

A B C D E F d = l  

co 0.34 0.44 _+ .01 - -  0.30 0.48 0.46 1/2 
X 0.29 0.32 - -  0.30 0.34 0.29 1/2 

0.862 0.725 _+ .004 0.86 1 0.713 _+ .002 0.64 1 
~o 0.847 0.7152 0.886 1 0.7043 0.59 1 
~/~o 1.018 1.014 0.97 1 1.013 1.09 1 
df 2.32 2.58 2.58 2 2.39 4 1 

The length rescaling factor b is taken as 2 except for lattice E, for which it is 2 x/2. Note 
that Z and ~/~0 are independent of the choice of b. 
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3. E X A C T  R E L A T I O N S  A N D  B O U N D S  A T  T H E  
S T R O N G - D I S O R D E R  FIXED P O I N T S  

3.1. The  exponents  i; and tu 

The observation that a properly scaled finite-size free energy goes to a 
fixed distribution under renormalization allows us to establish a relation 
between ff and co which we believe is exact and applicable to Euclidean 
lattices. Specifically we will argue that the finite-size scaling correlation 
length exponent v defined by Chayes et al. (11) (CCFS) is related to ~ and 
co via 

1 1 
. . . .  co (3.1) 
v 

It then follows from the CCFS bound, v >>. 2/d, that 

1 d 
~ - - c o ~  (3.2) 

It should be noted that the CCFS bound is easily generalized to hierarchi- 
cal lattices if d is replaced by the fractal dimension dj = log Nb/1Og b. 

It is instructive to consider the example of SAWs in a one-dimensional 
random environment. For a chain of length L, the free energy fL  is a 
random variable which is the sum of L random energies each with variance 
a and mean ( E ) .  According to the central limit theorem, as L ~ oo the 
distribution for the variable 

1 
TL-tTL1/2 EfL + (#- -  ( g )  ) Z] (3.3) 

approaches a Gaussian with mean zero and variance one. TL can be 
written in terms of the previously defined parameters ~, co, and #c, 

1 
Tr = aLO~ [fL + (# - #c) LIlt] (3.4) 

This identification follows from considering the variance offL,  which scales 
as L 2'~, and ( N )  = 8 ( f L  )/a#,  which scales as L 1/~. Thus, in one dimension, 
co = 1/2, ~ = 1, and #c = ( E ) .  

In order to identify the finite-size correlation length exponent v defined 
by CCFS we must find an appropriate "finite-size scaling event" YL. We 
take the event Y/~ to occur when the inequality --fL/aL~ a holds, where 
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a is some positive constant.  The finite-size scaling event must  satisfy two 
properties set forth by CCFS.  Proper ty  (A) is that  there is a positive con- 
stant c such that  at the critical point  ~ = ~c, Prob{  YL} ~> 2c as L ~ ~ .  
This is clearly satisfied since, at the critical point, -- fL/aU~ TL and 
P r o b { -  TL > a} is given by the complementary  error function (erfc) with 
a rgument  a. P roper ty  (B) of CCFS is that  for #</~c  and any e > 0 ,  
P r o b { - - f L / a L ~  e} tends to zero exponentially fast in L. This proper ty  is 
satisfied since the asymptot ic  behavior  of the er fc(e+ ( / t - / ~ o ) L  I/~-~~ is 
exponentially small in L. 

The C C F S  correlat ion length CF(#) is defined by 

~y(#) = m a x { L  I P r o b [  YL] > c} (3.5) 

The equat ion which determines the correlation length is then 

erf(a + (/~ - #c) ~/r o~) = 2c (3.6) 

f rom which we obtain Cy~ (/~ - ~to) ~ with 1/v = 1/~ - o~ as promised. 
For  SAWs in d >  1 we expect that  there is a r andom variable 

XL =fL/a*L ~' which goes to a fixed distribution as L ~ ~ for p = ~t~. This 
distribution will not  be a Gaussian,  but  it must  have a finite mean and 
variance and it must  decay sufficiently fast for large values of I X[. We 
have checked this idea qualitatively for hierarchical lattices. The fixed 
distribution for the hierarchical lattice of Fig. 1B is shown in Fig. 2. If  the 
distribution is scaled so that  its variance is one, then the mean is ( X )  = 1.03. 
We did not  collect enough data  to establish the form of the tails of the 
distribution; however, our  results are consistent with an exponential  decay 
of  the form 

P(X) ,,~ exp( -a_+  IXI ~-+) (3.7) 

where the + and - refer to the sign of  X. Plott ing log Ilog P(X)I vs. 
log IxI yields 3+ near 2 and 3_ near one. 4 

In  one dimension, the distribution for X is a Gaussian for all values 
of # and deviations from #c appear  as shifts in the Gaussian. For  d >  1, the 
situation is more  complicated because the flow away from the fixed dis- 
t r ibution is not  a simple shift. More  generally, we must  consider flows 

4 We can estimate the values of 6 given the assumption that the tail of the distribution is self- 
reproducing under renormalization. For X'~> (X) the zero-temperature recursion relations 
are controlled by the shortest path between the endpoints so that X' is a sum of b random 
variables, X scaled by bC It is straightforward to verify that the tail of the distribution for 
X is invariant under this operation if 6+ = 1/(1-co). For X' large and negative the zero- 
temperature recursion relations are controlled by the longest path between 0 and L. This 
path has length L d. Thus, we obtain 3_ = d/(d-~o). 
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The fixed distribution p*(X) for the scaled free energy X for the hierarchical lattice 
of Fig. lB. The free energy is scaled so that the variance of p* is unity. 

under renormalization in the space of distributions. The recursion relations 
such as Eq. (2.5) together with a rescaling by b ~ induce a renormalization- 
group transformation R on the probability density p(X)  for the scaled free 
energy. The fixed distribution p* satisfies 

p* = R [ p * ]  (3.8) 

Near the fixed distribution we can linearize the RG transformation so that, 
if 

p = p* + eg (3.9) 

then, for small e, 

g'= 91g (3.1o) 

with 91 a linear operator. We suppose that 9l has one eigenfunction g(1) 
with eigenvalue larger than unity. We further suppose that if # deviates 
from #c, then an eigenfunction expansion of p has a nonzero contribution 
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from g(~). Conventionally, the correlation length exponent v is identified 
with the largest eigenvalue of the linearized RG, 

b l / V g  (1) = 91g (1) (3.11 ) 

In the region near the fixed point where L is large but I#-#ct L1/V is small 
we suppose that only the relevant eigenfunction survives and write the 
flowing distribution as 

p(X) ~ p*(X)  + k(#  - Pc) L ~/Vg(~)(X) (3.12) 

where k is a constant determined by the temperature and the initial 
distribution. Using the CCFS property A and Eqs. (3.5) and (3.12) and 
choosing c small, we obtain the finite-size correlation length, 

~ f ( # )  1/v = __ k ( #  - -  # c )  dX g(1)(X) c (3.13) 

Thus, v is also the CCFS correlation length exponent subject to the bound 
v >12/d. On the other hand, (N}  is defined from the mean value of the free 
energy, 

( N }  = - O { f L  ) /0# ~ f L1/Vg(1)(X) L~'X dX (3.14) 

where the factor L 1Iv arises from the flow ofp  away from p* and the factor 
of L ~ from the transformation from X to f Thus, again we can make the 
identification 1/~ = 1/v + co. 

3.2. Critical Fugacity 

The existence of a strong-disorder fixed point also guarantees that the 
critical fugacity for the annealed problem is strictly less than for the 
quenched problem. To see this, we note that the large-L limit of ( Z L )  can 
be computed at the quenched critical chemical potential #c from the 
strong-disorder fixed distribution p*(X)  via 

( Z L )  = f p*(X)  dX exp( - a*L~ (3.15) 

Assume that p* has support for X < 0 ,  as is the case for the hierarchical 
lattices studied here; then ( Z L )  diverges with L at #c- On the other hand, 
it is straightforward to verify from (1.1) and the existence of the pure 
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critical point that there is an annealed critical point # . . . . . . .  led at which 
( Z  L) is finite as L --} o% 

# . . . . . . .  led = #c.0 -- T log (exp( -- E/T) ) (3.16) 

where #c.O is the pure critical point and E is a single-site (bond) energy. 
Since (ZL) increases with #, we see that 

# c  > # c , a  . . . .  led (3.17) 

Supposing that the critical fugacities are proportional to the connective 
constants in the fixed-N representation, we have the corresponding strict 
inequality for large N, 

lira log(ZN)/(log ZN) > 1 (3.18) 
N ~  

where Z N is the partition function for SAWs of N steps starting at the 
origin. Equation (3.18) agrees with recent simulations. (1~ 

4. S E L F - A V O I D I N G  W A L K  ON P E R C O L A T I O N  C L U S T E R S  

A diluted Euclidean lattice is a particular case of a quenched random 
environment. Let p be the fraction of bonds present in the lattice, and Pc 
the bond percolation threshold. I fp  > Pc and if universality holds, we expect 
the statistics of the SAW to be controlled by the same strong-disorder fixed 
point as discussed above. The physical reason is the following. For  p > Pc 
and at scales larger than the percolation correlation length, the lattice still 
resembles a Euclidean lattice (link-node-blob picture), although with some 
local irregularities. At large length scales there is an effective random 
potential generated as a purely entropic effect. At P=Pc, however, t h e  
problem is different and amounts to studying the statistics of SAWs on 
percolation clusters. In that case too, despite much work, (2~'8'9'28'29) there 
remains considerable disagreement on whether or not the exponents are 
different from those for the pure system. The most recent numerical 
work (3'8) suggests that in d =  2 at p = Pc the size exponent is very close 
or equal to its pure system value. In a recent study, Meir and Harris (4) 
have applied both real-space RG and field theory methods to this problem. 
Their results are that ( is increased by disorder at p = Pc below dc= 6 and 
they obtain a 6 - e expansion of ( on Euclidean lattices. In this section we 
consider this problem, using the real-space RG methods of Section 5 
applied to the same hierarchical lattice as ref. 4. Thus, we follow the full 
distribution of bond free energies rather than the approximate bimodal dis- 
tribution of ref. 4. Our approach is exact on this particular hierarchical lat- 
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tice, except for statistical errors in followi0g the distribution. Although we 
also find that ~ is changed, we find that the statistics of SAWs is controlled 
once again by a strong-disorder fixed point, different from the one for 
P > Pc. The strong-disorder nature of this fixed point is out of reach of the 
method used in ref. 4, since these authors project onto a bimodal distribu- 
tion at each RG step, an approximation which is not justified since the 
width of the distribution of nonzero bonds becomes arbitrarily large. 

In this section we also comment on the field theory approach to this 
problem used in ref. 4. Although the situation is as yet unclear, we point 
out that there is a possibility that the analysis in ref. 4 may not describe 
SAWs on the percolation cluster. 

4.1. RSRG Approach 

We use the hierarchical lattice of Fig. 1A. The distribution of the 
Zi associated with each bond is now of the form P ( Z ) -  
( l - p )  6(Z)+pQ(Z) ,  and one has to follow both the evolution of the 
percolation concentration p as well as the "continuous" part Q(Z) under 
the recursion relation (2.1), which we recall here: 

Z' = ZIZ2 + Z3Z4 + Z1ZsZ4 + Z3ZsZ2 (4.1) 

In this approach we average only over those configurations which support 
at least one SAW from the origin to the endpoint of the lattice, that is, all 
averages are with respect to Q(Z). Although the initial form of Q(Z) is 
Q(Z) = 6 ( z - Z o ) ,  it does not remain of this form and rapidly becomes 
very complicated. The recursion relation for p decouples: 

p'  = f ( p )  = 2p 2 + 2p 3 - 5p 4 + 2p 5 (4.2) 

P =  Pc = 1/2 is the unstable percolation fixed point of Eq. (4.2) and for 
p > 1/2, p ~ 1 the pure value. We have used a method analogous to the one 
of Section 2 to follow Q(z). The flow diagram is displayed schematically in 
Fig. 3, where we show the three relevant variables, p, var(log Z) (or alter- 
natively T 2), and ( log Z ) / [ 1  +var( log Z) ]  m. In particular, there are 
now two strong-disorder fixed points, one (SDpc) for p = Pc which controls 
the SAW on the percolation cluster, and the one studied in Section 2 (SD1) 
controlling the SAW on an undiluted random lattice, p = 1, with disordered 
initial Q(z).  It is important to notice that the plane of initial conditions 
var(log Z)  = 0, which was represented in Fig. 1 of ref. 4, is unstable and one 
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( L n Z )  

/~(]+Var(Ln;Z) 1/z 
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,=1 
~,P 

Vor(Ln~ 

Fig. 3. Schematic flow diagram for SAWs on the diluted hierarchical lattice of Fig. 1A. The 
fixed points are as follows: (P) pure critical point; (SDI) strong disorder for p>p~,; (SDp~) 
strong-disorder fixed point at the percolation threshold; (L) longest path on a percolation 
cluster; (S) shortest path on a percolation cluster. 

immediately flows outside this plane. The critical manifold (F)  which 
contains the two strong-disorder fixed points and its intersection with this 
initial plane is also represented. The fixed points representing the longest 
(L) and shortest (S) SAWs on percolation clusters are also represented. 

The strong-disorder fixed point  (SDpc) at percolation p = Pc is then 
studied and as in Sec t ion2 one can use ze ro - tempera tu re  recursion 
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relations in the following form, by enumerating all possible cases and 
exploiting the symmetries (all the fi  are independently distributed): 

f '  = f l  + f2 with probability 1/2 

f '  = f l  + f2  +f3  with probability 1/8 

f ' =  min(fl  +f2,f3 +f4)  with probability 1/16 (4.3) 

f '  = min(fl  +f2 ,  f l  + f5  +f4)  with probability 1/4 

f ' =  min(f~ + f2, f3 + f4, f l  + f5 + f4, f3 +f5  + f2) with probability 1/16 

The probabilities are obtained using Pe = 1/2, and N' is given by the 
sum of the N along the minimizing path in each case. The rest of the 
analysis is identical to Section 2. We find ~ = 0.850. The value obtained 
using the approximate method of ref. 4 at the fixed point B is 
~ '=  (log 2/log 2K)~ 0.8488 (note that these authors choose to make a dif- 
ferent identification of ~ using the exact value of the percolation correlation 
length exponent on 2D Euclidean lattices, but this is irrelevant here since 
we are really only comparing the eigenvalues). Although these values are 
close, they are definitely distinct. They are also distinct from ~o ~- 0.8465 on 
the same lattice, and from ~ = 0.86 at the strong-disorder fixed point for 
Pc < P < 1. In addition, we find ~o(p = Pc) = 0.563. 

Let us make some comments now on the shortest and longest paths. 
The corresponding exponent for the shortest path is given by studying the 
recursion relations: N'  = N1 + N2 with probability 7/8, N'  = N~ + N2 + N3 
with probability 1/8, and all Ni = 1 as an initial condition. By studying the 
transformation rules for the first moments of the distribution of N's one 
easily shows that the variable u = Nb-~/~sp, with ~sp = in 2/1n(17/8)~-0.9196, 
has a nontrivial limit distribution with variance ~r = 7/153 and average 1. 
Higher moments could also be computed analytically. Similarly, for the 
longest path one finds ~lp = l n  2/ln(39/16)~0.778. One has the rigorous 
bounds ~p <~sAw(P=Pc)<~sp.  These exponents were previously 
studied (3~ numerically on the same lattice, yielding results fairly close to 
our exact values, although the error bars in ref. 30 were too optimistic. It 
is surprising that these exponents can be found analytically while the 
exponents associated with the free energy are controlled by a strong- 
disorder fixed point and cannot be obtained analytically. For instance, for 
very large negative f i  (e.g., Ki very small--point E in ref. 4) the recursion 
relation (4.3) becomes f ' = m i n { f l + f z , f 3 + f 4 }  with probability 1/8, 
f '= f~+f2  with 3/4, f ' = f l + f z + f 3  with 1/8. This leads to ~sp for the 
lengths of the path since the recursion relations for f and for N are 
decoupled. However, due to multiply connected paths, the fixed distribu- 
tion for the free energy is nontrivial, characterized by a nontrivial co. 
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4.2. Field Theory 

Meir and Harris (4) wrote down a field theory describing SAWs on 
percolation clusters which has a perturbatively accessible fixed point 
around d =  6. They studied the partition function (i.e., susceptibility) 

F(p, K ) = ~  (vijlogZ(i,j ,  K))  
J 

where K -  = e ~/r and vii = 1 if i a n d j  are connected and zero otherwise. From 
F(p, K) one can compute the double average (Kf,j) by differentiation with 
respect to log K. This field theory is very similar to the one used in the 
study of the dilute X Y  model or the random resister network (31) and using 
techniques developed for these problems, they obtain one-loop RG 
recursion relations for the spatial Fourier transform Gk(q) of the replica 
moments (v~Z(i, j, K)k). Denoting G~(q)= (q2 + rk)- l ,  they find that the 
variables rk enjoy (4) the following recursion relations [with G k -  G(1)] to 
order e: 

dr k 2e 
b ~-~= ( 2 - q )  rk +-~ GkGo--~ 

with q = -e/21. 

k! 
s=o ( k - s ) ! s !  G'Gk s (4.4) 

The variable r k must then be expanded around k = 0 ,  
rk = ro + Ulk+ u2k2+ .... and one is interested in the recursion relation of 
the coefficients ro, Ul, u2 ..... The variable r o is the usual percolation 
variable ~ ( p -  p<), and Ul is related to the variable (log Z )  and uz with 
Var(log Z). From (4.4) one obtains 

( 7) b---~= 2 - r l -  ul + 7s= , s (4.5) 

The authors of ref. 4 then argue that Eq.(4.5) is of the form 
bd(ul - u,c)/db = (Ul - Ulc)/~, and thus identify ~ as ~ = 1/2 + ~/42. 

We claim, however, that one must be cautious here in interpreting the 
field theory. There is a fixed point of (4.4) to order e, namely 

c ~ (2k-1 1) (4.6) r k ~  ~ 

obtained from (4.5) by supposing all rk of order e. At this fixed point the 
above identification of the size exponent is certainly correct. The problem 
is that this fixed point has infinitely many unstable directions. It is unstable 
not only in the directions ro and Ul, as is expected to describe the SAW, 
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but also along the directions u2, u3, etc., as one easily sees by deriving 
recursion relations for u2, u3 analogous to (4.5). It remains to be shown 
that these directions are actually irrelevant to describe the SAW. The 
existence of an infinity of a priori relevant directions is a well-known 
feature of the ordinary percolation fixed point (which is a multicritical fixed 
point), and is also encountered in the problem of the resistor network 
(respectively the X Y  model). However, there is an important difference. In 
these problems there is no order at percolation. The conductivity of the 
resistor network (respectively the magnetization of the X Y  model) vanishes 
at p = Pc. One then starts from the percolation fixed point ukc =0 ,  and 
adds the uk with k >~ 1, which are thus perturbations all proportional to a k 
(K k respectively) of the percolation fixed point, with ~ the conductance of 
the bonds of the resistor network (K -1 is the temperature of the X Y  
model). What is studied is the crossover when these perturbations are turned 
on. It is then explicitly shown (31~ that u2, u 3 .... lead only to correction to 
the crossover exponent because if un ~ u~ initially, it remains true under 
renormalization, and thus, up to subdominant contributions, renormaliza- 
tion simply amounts to a rescaling of ul, e.g., a or K -1 respectively [-see 
Eq. (2.21) of ref. 31]. Here there is a transition at percolation at a finite 
"temperature" K21 which one can reach by varying # = log K. In these 
other models the transition was at zero "temperature," e.g., / ~ = - ~  or 
K - l =  0 (this "temperature" K -1 appears if these models are expressed in 
terms of spin models, but is unrelated t~o the variable T for the SAW intro- 
duced in Section 1). Thus, the nature of the problem is different, and here 
one needs to find a fixed point with only two unstable directions describing 
the transition at K =  K C and p = Pc. 

In the present case r k = r~ is thus no longer a fixed point (although r ;  
coincides with its value for percolation - e /14 )  and thus (4.6) is a new fixed 
point different from the percolation fixed point. Since G,G_s is even in s, 

2 The recursion relation (4.5), at the sum i n  (4.5) depends only on ul. 
least to order e, takes the form d(u~-u~c)/dl  = (u l -u l c ) / ( .  One could 
then argue that, since it is decoupled from the others, and since we are 
only interested in the behavior of (log Z ) ,  the fact that the uk, k >  1, 
flows away is without consequence for the exponent (. This seems to be 
true for d~>6, where ( = 1 / 2  due to the "geometric" constraint 
1 / 2 =  ~ l p ~ ( s p  = 1/2. However, for d < 6 ,  one sees from (4.5) that ulc 
depends a priori on all the other variables in a complicated way, and can 
be considered as constant to O(e) only as long as all the u k remain of order 
e. This can be the case, it seems, only if all initial parameters uk > 1 sit 
exactly at the fixed point; otherwise, they quickly flow away and Ucl cannot 
be considered as constant. Since one can always vary the microscopic 
parameters of the model, or also introduce a small disorder in the K within 

822/64/3-4-6 
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the cluster, there is no reason in general for the initial values of the 
uk, k ~> 2, to be at the fixed point (4.6). 

To conclude, the instability of the fixed point (4.6), and in particular 
the fact that u2 grows unless exactly at the fixed point, could indicate that 
the critical behavior of SAWs at P = P c  for d < 6  is described by another 
fixed point, presumably at strong disorder (large uk, k~>2). Further 
analysis of the field theory is called for to determine whether the result for 

to O(e) proposed in ref. 4 depends or not on the behavior of the uk. 

5. F I E L D - T H E O R E T I C  A P P R O A C H  NEAR FOUR D I M E N S I O N S  

5.1. R e v i e w  of the  Field Theory  

The quantity (Z(0,  x, K) k) can be represented by a field theory (5'7~ 
with fields (p~, i = 1 ..... n and c~ = 1 ..... k, in the limit n ~ 0: 

" k 

(Z(0,  ~, K) k) = j D~0~ [ I  q~(0) ~o~(x) 
( *  

exp(-- Sk) 

i f  k sk=~ dx F~ [(vq,~).(Vq,~)+t~o~.q~+u(~o~.~o~) 23 

A k 

t is the reduced temperature and A is proportional to the variance of the 
random potential. The true self-avoidance parameter is U and the 
parameter u = U - A / 8  has been defined for convenience (thus, u = - A / 8  

corresponds to an ideal chain in a random potential). 
In terms of renormalized quantities the RG recursion relations were 

shown to be (5'7) 

dt 
b ~ = (2 - 4u) t 

du 
b ~ = eu - 32u 2 

dA 
b - ~ = ~ A  + 2A 2 -  16Au 

(5.1) 

where e = 4 - d  and b is the renormalization scale. One sees (5) from (5.1) 
that (i) the recursion relations for u and t are decoupled from the disorder 
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and thus that u > 0 goes to u*, the value at the pure SAW fixed point (this 
feature persists at any finite order in perturbation theory due to the limit 
n-- ,0)  and (ii) for d < 4 ,  A grows indefinitely under RG and there is no 
stable fixed point. 

�9 ~ From (5.1) one can first identify a length scale bl obtained by setting 
A ( b l ) ~ l ,  such that perturbation theory can be trusted only for b~b~.  
One has bl = bo exp[(2Ao) 1] for d = 4 ,  and for d < 4 ,  bl =bo(1 +e/4Ao) 2~, 
where Ao need not be small compared to e [we have set u(b) at its fixed- 
point value u* ]. 

It was argued in ref. 5 that for k > 1, there is another length scale b* 
at which a first-order transition takes place where the ~0 fields acquire a 
nonzero expectation value. This occurs at A(b*)=  e / [ 4 ( k -  1)], which gives 
b * =  blk  ~. Clearly this can be trusted only for k - 1  >> e/4. The first-order 
transition occurs at the "temperature" tR = t ~ e ( k A o / e )  4/~ 3>0, where 
t R = 0  is the second-order transition temperature. From this one can 
deduce (5~ that 

( Z~  ) ~ ( Z N ) k exp( k t f  N) (5.2) 

5.2. C o m m e n t s  on the  Field Theory ,  4 + ~  Expansion 

We would like now to add some remarks to the analysis of ref. 5. 
There are several similarities between the recursion relations (5.1) around 
d = d c = 4  and those which describe directed self-avoiding walks or 
equivalently the KPZ equation (12,~3) around d ' = d ' c = 2  , where d'  is the 
number of transverse dimensions. To first order in e the recursion relations 
are (12, ~3,15) 

b dD= b dA A 2 
db ( - 2 + z ) D ,  - -~=eA+ (5.3) 

with e = 2 -  d', D is the diffusion coefficient of one walk, z the dynamical 
exponent, and A the strength of the disorder. The first equation would be 
similar to b dt/db = 2t. This similarity in the structure of the RG flow 
around the pure fixed point is even more striking when several directed 
walks with mutual repulsion are considered, as in ref. 15, for which one has 
the additional recursion relation for the mutual repulsion strength u (u = U 
here) 

du 
b -~ = eu - u 2 (5.4) 

The similarities are the following, as one can see by comparing for- 
mulas (5.1) and (5.3), (5.4): (i) the disorder is decoupled from D (and u) 
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and (ii) A grows indefinitely. The main difference of course is that for the 
directed polymer, due to exact Galilean invariance, D is unrenormalized 
(for an appropriate definition of D this feature is exact) and does not 
couple to u. 

We would like to emphasize that, although the recursion relations 
(5.1) are relative to the Hamiltonian of the replicas, they do not depend on 
the number of replicas. They also yield the recursion relations for the 
renormalization of the physical parameters of the model, quite inde- 
pendently of any considerations involving replicas. (14~ They can be derived 
directly without replicas, (14) a procedure which usually is equivalent to 
doing the limit k--* 0 in the recursion relations. 

It is now well established in the case of the directed walks that it 
would be incorrect to conclude from Eq. (5.3) that ~ = 1/2. The reason is 
that there is no fixed point at small positive A for d'  < 2 and that, as other 
approaches show, the physics is controlled by a strong-disorder, or zero- 
temperature fixed point (at A = (30), (12-14'23) At this fixed point 
~> 1/2 (~=2/3 (33) in d ' =  1). Thus, we believe it would be dangerous to 
conclude similarly that ~ = ~0 from the fact that the recursion relations for 
the SAW close to the pure fixed point are unchanged by disorder. It seems 
reasonable instead to conclude from the field theory and the analogies with 
the DSAW that the presence of runaway trajectories for the SAW below 
d =  4 indicates that the system is controlled by a strong-disorder fixed 
point, an idea first stated by Obhukov. ~7) It is possible that ~ = ~o at this 
new fixed point, but in that case one expects to find an underlying reason 
such as a symmetry. 

Let us now take a closer look at the RG flow diagrams. For  d >  4 
(e < 0) it is clear that there exists a finite A = Ac perturbative fixed point to 
(5.1) as sketched in Fig. 4. There is a phase where both disorder and self- 
avoidance are irrelevant and where the polymer behaves like an ideal chain. 
The frontier of this domain can be determined within perturbation theory 
for ]el small (as, for instance, in the 2 + e expansions of the nonlinear sigma 
model(34)). We have represented the complete domain A ~> 0 and arbitrary 
u. It is important to remember that u - U -  A/8, where U is the "true" self- 
avoidance of the polymer. On the invariant line u = - A / 8  ( U =  0), which 
corresponds to the ideal chain in a random potential, ~35) there is a multi- 
critical fixed point M. For  u > - A / 8  ( U >  0) the frontier of the phase where 
both u and A are irrelevant is a curve Ac(u ) identical to the stable manifold 
of the fixed point C. The fixed point C thus controls the transition from 
this phase to a strong-disorder regime. Similarly, M controls only the 
transition for U = 0  between strong and weak disorder. Finally, for 
u < --A/8 (attractive interaction) the frontier is a vertical line u = -1e[/32, 
controlled by S. Note that in d >  4 random walks need a finite amount of 
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attraction to collapse (for u < -]ej/32).  The corresponding flow diagram 
for d < 4 is represented in Fig. 5. The fixed point S is now at u = e/32 > 0 
and corresponds to pure SAWs. There are no other nontrivial perturbative 
fixed points, since M and C are now in the "unphysical" regime A < 0. 

Since C corresponds to a finite and small A c it is now correct to 
conclude from the decoupting property mentioned above that ( = 1/2 on the 
boundary between weak and strong disorder. A similar result holds (14) for 
directed walks at A = - e .  In that problem, however, it was argued ~ that, 
due to Galilean invariance, it must be true exactly. Here the argument is 
only perturbative in e. Despite this fact, the fixed point C has some features 
which differ from the Gaussian fixed point. As is the case for directed 
walks, 114) the functuations of the free energy should grow like some power 
of log N. We have not yet at tempted to compute these fluctuations. 

The exponents associated with the fixed points S, M, C have been 
studied to order e 2 before (32) (more generally for an m-vector model). 
However, M and C (for m = 0) have been termed unphysical. 132) Since here, 

S ~/32 
4 M- ~ 

/ 
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G 
IDEAL CHAIN 

- ~ / 2  

u = U - A / a  

DISORDER 

A 

Fig. 4. Field-theoretic renormalization group flow diagram for d> 4. 
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in d > 4 ,  they have an interesting physical interpretation, we give their 
associated exponents (32) (only for e < 0 for M and C, and for any e for S). 

1 1 15 1 2 e = ~ 8 -  7 52 s: v=~+ig~+q-~' " = ~ '  1-~ 

( S =  self avoiding walk for e = 4 -  d >  0, self-attracting walk at the collapse 
transition for e = 4 - d <  0); 

1 1 27 2 1 1 35 2 
M: v--~-1~1~1-~8, ~=~82, ~=--~181-1-~ 

( M = i d e a l  chain in a random potential at the transition weak-strong 
disorder for d = 4 +  181); 

1 1 1 c: v=~, q = - ~ 8  2, ~=-~181 

(C=self-avoiding walk in a random potential at the transition 
weak-strong disorder for d =  4 + Is1 ). Here one can make the identification 

.[G 

g 
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=S u = U - A / 8  
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A 

Fig. 5. Field-theoretic renormalization group flow diagram for d <  4. 
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Note that all these fixed points have 2-dv<O for d > 4 ,  which 
satisfies the CCFS bound (see Section 3). Note that ~ = 1/2 for C at two 
loops, in agreement with the prediction ~ = 1/2 to all orders in e. 

How many strong-disorder fixed points are there? There is certainly 
one corresponding to initial values of the parameters on the line u = -A/8, 
corresponding to ideal chains localized in a random potential (and if one 
end is fixed, forming a totally stretched tadpole-like configuration(me)). It is 
not clear whether there should be only one SAW strong-disorder fixed 
point as the initial value of U is varied. For  instance, at the level of the per- 
turbative flow of Figs. 4 and 5, there seem to be two regimes for u < uc(d ) 
and u > uc(d) with uc(d ) = 0 for d <  4 and uc(d ) = tel/32 for d =  4 + [el (this 
might be irrelevant at strong disorder). It would be interesting to develop 
real-space approaches where the amount of self-avoidance U could be 
varied (in the present paper U = oc). 

Finally, it is interesting to notice from the recursion relations (5.1) that 
there is an effect of screening of the disorder by the self-avoidance, although 
for long enough chains N > ~ the disorder ultimately wins in d ~< 4. In d = 4, 
this length scale can be particularly large if the ratio uo/Ao is large. Then 

..~ exp(uo/A 2) for uo/Ao >> 1. This effect may lead to difficulties in observing 
the asymptotic behavior in numerical simulations. 

6. V A R I O U S  S C E N A R I O S  FOR T H E  E X P O N E N T S  

In this section we discuss several scenarios leading to predictions for 
the exponents ~ and co and relations between them. These predictions are 
based on qualitative arguments and, indeed, they are to some extent 
mutually exclusive. Nonetheless, we think they can serve as useful guides. 
At this stage the most cautious approach would be to conclude that at the 
strong-disorder fixed point ~ and co can assume a priori arbitrary values 
consistent with the bounds of Section 2. 

Since we will attempt to make some analogies with the better under- 
stood problem of the directed walk, it is useful to write both partition 
functions in the Edwards representation: 

ZDSAw(R , N) = (r(N) = R 
~ ' r ( 0 )  = 0 

+Ufds'3(r(s)-r(s'),+Al/2V(r(s,)]} 

Dr(t)exp{-f  dt[~---~(dr] 2 \dtJ +~l/2V(r(t)' t)]} 
Dr(s) exp{--f ds[~---~(dr) 2 \ dsJ (6.1) 

(6.2) 



566 Le Doussal and Machta 

6.1. Flory A r g u m e n t s  Relat ing i;, m, and ~o 

In  the D S A W  problem, due to Galilean invariance, D is unrenor-  
malized. More  precisely, this is because 

log Z(R, N) v = log Z(O, N) v, + R2/4DN 

where V' is the potential configurat ion obtained from V via a Galilean 
t ransformation V'(r, t) = V ( r -  tR/N, t) which corresponds to a rotat ion of 
small angle R/N. Since V' has the same distribution as V, (14, 36, 37) the 
kinetic er/ergy (elastic term) scales as exactly R2N -1. Given that  the 
D S A W  is controlled by a zero-temperature fixed point  with fluctuations in 
the position of the head of  the walk R(N) governed strictly by the fluctua- 
tions 5 of  the free energy, one has R2N -1 ,,~N ~, which provides the exact 
relation Z = 2 ~ •  It  is impor tan t  to note that being at a zero- 
temperature fixed point  does not mean that the elastic entropy can be 
neglected. The above invariance proper ty  shows that  there is a cost 
R2/4DN for "stretching" the D S A W  in the transverse dimension. 

Is there an analogous relation for the SAW? It is well known (38) that 
for a SAW in a pure environment  one has 

log[-Z(R, N)/Z(N)] ,~ -(R/N~~ ~/(1-~~ (RN ~o>> 1) (6.3) 

l og [Z(R ,  N)/Z(N)] ~ - ( N / R  ~/~~ (RN c0 ~ 1) (6.4) 

which is true at least in the scaling region. Suppose that the effect of the 
disorder is to stretch the SAW due to the competi t ion between the free 
energy fluctuations and the stretching energy (e.g., elastic entropy). If  one 
assumes the elastic entropy is the same as for the pure SAW, Eq. (6.3), one 
finds the relation 6 

1 ~ - ( o  
co = (6.5) 

1 - ( o  

This relation yields Z = ~ o ) = 2 f f  - 1 for d > 4 ( ~ o =  1/2) and also predicts 
= ~o if o) = 0. However,  we did not  find a symmetry argument  analogous 

to Galilean invariance showing that (6.5) is exact. This relation would be 
exact if, as for the DSAW,  one could write the free energy as a sum of a 
r andom part  whose distribution would be independent of R and a nonran-  

s Free energy fluctuations are believed to scale as N z both with respect to the environment 
and to the position of the headJ 141 

6 There is an interesting equivalent formulation of the relation (6.5) as v'= v~ =-~o, where v' 
is the exponent characterizing the singularity of the free energy of the SAW. Details are given 
in Section 7. 
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dom part equal to the stretching energy of the pure SAW, e.g., 
log ZN(R) = log ZN(Ro) + Eel(R/Ro). 

It is also interesting to note that if disorder was to compress the SAW, 
the relation suggested by (6.4), co = 1/~-1/Go, is excluded by the CCFS 
bound for d ~< 4. 

From the naive dimension of the disorder term in (6.2) one can extract 
a second relation between ~ and co. Since the disorder term scales as N/R d/2 
we obtain 

1 d 
co . . . .  (6.6) 

2 

Combining (6.5) and (6.6) leads to a Flory theory for ~ and co with the 
result 

1 
(v (d)=  1 + �89 (6.7) 

and 

1 
coy(d) = ~ (2 - d~o) (6.8) 

giving ~ v ( 1 ) = ~ o = l ,  ~v(2)=0.8(~0=0.75), ffv(3)=0.618 (ffo=0.588...), 
and ffv(4)=~o= 1/2 and coy(l)= 1/2, COF(2)= 1/4, C0V(3)=0.118 , and 
COF(4 ) = 0. This Flory estimate is to be compared with the Flory estimate 
~ , F = 3 / ( 4 + d ' )  for the DSAW (39) coming from the identification 
R2/N,,~N1/2R-a'/2 (d' is the number of transverse dimensions). For the 
DSAW the Flory estimate is not accurate, but still gives a rough idea of 
how the wandering exponent is changed (~• compared to exact 
value if• = 2/3 in d ' =  1). Here the difference ~v/~o is near unity (within 
6%) in qualitative agreement with the RSRG results and one can speculate 
that (6.7) gives a reasonable approximation on Euclidean lattices. On the 
other hand, gv=cov~v for d = 2  and 3 is significantly smaller than the 
corresponding results on hierarchical lattices. 

The Flory result for ~ can also be obtained by finding the size R which 
minimizes a free energy of the form 

R._R__']I/(1 ;01_ NR-d/2 (6.9) 
N ~~ 

where the first term incorporates the combined effects of self-avoidance and 
elasticity and the second term represents the disorder. The present Flory 
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theory is distinguished from the usual Flory arguments (16) because we start 
at the SAW fixed point rather than the Gaussian fixed point. A similar 
Flory theory based on the SAW fixed-point theory was proposed recently 
to predict the size exponent self-avoiding loops under pressure in d =  2 and 
seems to be in good agreement with numerical data (this is a problem 
without disorder). (4~ 

One objection one can make to this argument is that adding more self- 
avoidance to (6.9) (i.e., a term of the form N2R -d) would dominate the 
disorder term and lead to a modification of ~. There is no inconsistency if 
one remembers that the idea here is to make a Flory argument starting 
from the nontrivial SAW fixed point. First, from the RG recursion relations 
(5.1) it is clear that at the SAW fixed point, additional self-avoidance is 
irrelevant (U--+ U*) and does not change the exponent, whereas disorder 
is relevant and drives the system to a new strong-disorder fixed point. We 
are assuming in the Flory theory that disorder is relevant and changes the 
scaling behavior for the size of the walk. 

The above Flory argument can be easily generalized to self-avoiding 
manifolds (SAM). By equa{ing (R/N~~ 1/0 Co)~ NDR-d/2 one finds 

~0+D( 1 -~o)  
~V-- 1 + �89 -- ~o) 

which remains very close to the Ftory value ~ov = (D + 2)/(d+ 2) for the 
pure SAM. (41) 

The dimensional relation (6.6) is a statement that ~o and ~ saturate the 
CCFS bound (3.2). If we replace (6.6) by the exact bound (3.2) and 
suppose that there is an additional monotonic relation between ~ and ~o, 
for example (6.5), such that co is an increasing function of ~, then we obtain 
the result that the Flory value is a lower bound for ~: 

As was also noticed by D. S. Fisher, (42) there is a bound, analogous to 
the CCFS bound, for the DSAW. Since for an anisotropic system 
c ~ = 2 - ~ l t - d ' ~ _ L = l - d ' ~ ,  the generalization of (3.2) for anisotropic 
systems is 

1 d' 

which leads to 
3 

~ •  d, 
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a presumably rigorous bound, which is obeyed by known results for 
DSAWs (it is an equality in d =  d ' +  1 = 1, since Z = 1/2). Note that the 
isotropic bound (3.2) with ~ = ~ll = 1 yields only )~ ~> 1 - d ' / 2  or ~ ~> 1 - �88  
An analogous bound should hold for the interface problem. (42~ 

6.2. Replica Bound States and Scaling Argument 

6.2.1. Directed Walk. If the DSAW problem is formulated with 
replicas, disorder produces an attractive interaction between replicas and 
they form bound states. For  a continuum model in d ' =  1, it is possible to 
exactly compute the energy Eo(k) of the bound state of k replicas, (43) from 
which one obtains for integer k, the leading behavior for large N: 

( Z k )  ~ ( Z )  k exp[ - N E o ( k ) ]  

where Eo(k ) = - c ( k  3 -  k).  If one naively continues this expression to any 
real k, one finds that 

(exp k(log Z -  ( log Z ) ) )  ~ exp( cNk 3) 

If one then assumes that the distribution of the variable A F =  
log Z -  (log Z )  takes, in this continuum model, a scaling form 

Pr{AF} ~ N - Z f [ A F  N -z]  (6.10) 

one must have Z = 1/3. 
Since Eo(k) is known exatly only in d ' =  1, one can try to estimate it 

for any d'. A simple argument, first given by Zhang (44) in the context of the 
codimension-1 interface problem (which coincides with the DSAW for 
d ' =  1), allows us to estimate Eo(k )~  k ~ for large k. Then, if the scaling 
form (6.10) holds, one must have ( e x p ( k A F ) ) ~  exp(cNk l/x) and )~ = 1~ft. 
This identification is reasonable only if the behaviors for large and small k 
are the same, which holds if the large fluctuations of the free energy scale 
in the same way as the typical fluctuations ]~e.g., if there is only one length 
scale in (6.10), which might be true since it is a continuum model].  
Although this assumption works for d ' =  1, there is no general justification 
for it. 

The energy of a bound state of k replicas of transverse extension r can 
be estimated as 

N _N 
E( k ) ,.~ kD --~ - Ak 2 Fd' r -  

(6.11) 
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which is minimized for r ~ ( A D -  1 k ) -  1/(2- d') and thus Eo(k) 
D ( A D -  1)2/(2- a'l k ( 4  - a ' ) / ( 2  - d ' ) ,  leading to 

2 - d '  3 - d '  

Z = 4 - d "  ~ = 4 - d '  

These values are exact in d = d '  + 1 = 1 and d = 2. They predict )~ = 0 and 
= 1/2 in d =  3 (for d '  > 2, since weak disorder is not relevant, there is not 

a continuum model describing the weak-disorder limit of a discrete model, 
e.g., one has to consider a discrete model). 

There is another way to formulate the above argument without 
introducing replicas. The basic remark is that the same result can be 
obtained from a dimensional analysis of the Fokker-Planck equation: 

c3 
~?N Z = D V2Z - V Z  

Imposing the condition that the two last terms scale in the same way leads 
to a time-dependent length scale such that D L  - 2 ~  (A) m L-d ' /2T  -1/2 or 
equivalently L ~ ( D 2 T / A )  1/(4 d,). Then one estimates the free energy 
fluctuations by equating the right-hand side to the left-hand side of the 
above formula with Z ~ e x p ( A F ) ,  which gives A F ~ D ( D 2 / A ) - 2 / ( 4 - d ' ) x  
N(2 a')/(4-d') as above. 

6.2 .2 .  S e l f - A v o i d i n g  Walk.  A similar argument can be made to 
estimate the bound-state energy of replicas for the self-avoiding walk. As 
was discussed in ref. 5, the optimal configuration, in the regime described 
by a continuum field theory (e.g., for k < kc at which discretization effects 
become relevant--here kc can be taken infinite since small disorder is rele- 
vant for d < 4 ) ,  is a self-avoiding sausage in which all the k replicated 
mutually attracting SAWs are confined. The width r of the sausage can be 
estimated as in (6.11) from the energy: 

N N (6.12) E ~ k ~ + d k  2 rd - 1/~o 

where the first term is the sum of the confinement energy of each SAW 
inside the sausage, and the second term is the interaction energy of the 
SAWs, precisely ~ N2/(r d-  lrl 1), where r lt ~ Nrl  - 1/~o is the length of the 
sausage, as given by a blob argument. Minimization of (6.12) gives 
r ~  (Ak)  -;~176 (for d <  4), and E ~  A1/~~ (1 + ~0~/~0. This gives a new predic- 
tion: 

~0 
Z = (6.13) 

1+c% 
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a very general result, valid for SAWs or DSAWs, if ~o denotes the value of 
the pure-system specific heat exponent eo = 2 -dC0  (~o = 1 -  d'/2 for the 
DSAW, see above). Equation (6.13) is exact for the DSAW with d ' =  0 and 
seems to provide a good approximation for the SAW in d =  2, where one 
finds z(d = 2) = 1/3, quite close to the results on "d = 2" hierarchical lattices 
A, B, and E. The result z ( d =  3)=0.190 is much smaller than the " d =  3" 
hierarchical lattice F. 

The fact that, in this argument, the center-of-mass motion for the 
SAW is itself a self-avoiding walk does not indicate a priori that ~ = Co- The 
same phenomenon occurs for the DSAW for which the center-of-mass 
motion is itself an unperturbed random walk, as a consequence of Galilean 
invariance. In that case the consequence was that an elasticity theory 
applies, leading to a relation between Z and C. A similar analysis for the 
SAW has been attempted in Section 6.1. 

It was observed in ref. 5 that the length scale b* (see Section5.1) 
appearing in the field theory analysis of the first-order transition of replicas 
k ~> 2 was identical to first order in e to the confinement length r resulting 
from the naive minimization argument (6.12). Here, we make the observa- 
tion that the result of the field theory analysis for the replica moments for 
k ~> 1 + 0(5), namely (5) 

( Z k )  ~ e x p ( c l k N  + c251 4/~A4/~kl +4/eN) 

actually suggests that 
5/4 

Z = 1 + g/~ 

to lowest order in 5, identical to (6.13) since c% = 5/4 + 0(52). This result is 
not fully justified, since it depends on the continuation to k ~ 0, while per- 
turbation theory breaks down close to k = 1. It appears that the first-order 
transition in the replica moments signals the existence of bound states in 
the theory, the energy of the bound state determined by the transition tem- 
perature of the first-order transition. This should be a general feature of 
disordered systems, and an investigation of its consequences for the DSAW 
perturbatively around d =  2 would be interesting. 

Finally, note that if C ~> Co the prediction (6.13), Z = c%/(1 + c%), obeys 
the CCFS bound (3.2) and saturates it in d =  1. 

6.3. A l t e r n a t i v e  Flory Theor ies  

An second Flory theory is based on the ideal chain and begins with a 
free energy of the form 

R2/N + UN2R -a _ A 1/2N 1/2R -d/2 
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The first and second terms represent the elastic and self-avoidance 
energies, respectively. The third term is the typical energy of the random 
potential (in naive dimensions). Since the third term scales as 
N~~ ~ N~~ (co - 2 - d~o), it is always much smaller than the self-avoidance 
energy, and oneconcludes that disorder 'does not affect the size of the chain 

= ~o (6.14) 

On the other hand, the fluctuations in the free energy are controlled by the 
last term and one obtains 

)~ = 1 - d~o = Co/2 (6.15) 

Equations (6.14) and (6.15) are consistent with the Lifshitz calculation (5) of 
( Z  k) for k < l  and are in reasonable agreement with the RSRG 
approaches for d =  2 and 3. On the other hand, the assumption that self- 
avoidance dominates over disorder is hard to reconcile with the ideas of a 
zero-temperature fixed point where disorder is the dominant effect. 

Finally, we review Flory ideas presented by Obukhov. In ref. 7 he 
proposes the elasticity relation )~ = 2~ - 1. This relation replaces our equa- 
tion (6.5) and is isomorphic to the exact relation for the DSAW. It is 
obtained using the ideal chain result for the stretching energy, R2/N. One 
justification would be to remember the Flory argument for the pure SAW 
(e.g., minimization of the sum R2/N+ N2/R d) and then to argue that if a 
SA chain is highly stretched (e.g., by disorder), then self-avoidance is irrele- 
vant and the only elastic energy comes from the t e r m  RZ/N. This form of 
the stretching energy cannot hold near d =  1, or near ~ = 1, since it predicts 
X = 1 instead of the correct value Z = 1/2. By comparison, (6.5) is plausible 
even when self-avoidance is relevant. Obukhov argues that ;~ -- 2~ - 1 holds 
only if ~ > ~o. It seems to us, however, that there might be an inconsistency 
with the approach of ref. 7, since self-avoidance cannot be irrelevant to 
stretching the walk. It is known that in the absence of self-avoidance the 
ideal chain has a quite different shape (i.e., a tadpole configuration with a 
collapsed head and a stretched tail~35)). 

7. CROSSOVER FROM SAW TO D S A W  IN A 
R A N D O M  POTENTIAL 

In this section we analyze the crossover from the SAW to the DSAW 
in a quenched random potential, using simple scaling arguments. This 
crossover also exists for pure SAWs, but is more subtle here because disor- 
der rather than thermal fluctuations dominates the physics. There are two 
ways to observe this crossover: (1) One can impose a constant stretching 
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force F on the free end of a SAW of N steps (the other end being fixed at 
the origin). (2) One can fix both ends at distance L from each other, 
introduce a chemical potential per step, and study the stretched limit 
( # -  #c) Ll/~ >> 1. We first study the latter problem using hierarchical 
lattices as a guide. Our results are probably also true on Euclidean lattices. 
In this section we denote by Z ' =  co' the free energy fluctuation exponent of 
the DSAW on the same lattice. 

7.1. S i n g u l a r i t y  of  the  S A W  Free Energy and Its 
F luc tua t ions  at  p = IJc 

It is clear by looking at the recursion relations (2.1) and (2.5) on 
hierarchical lattices that if one starts from a small # -  #c > 0, one flows 
away from the SAW strong-disorder fixed point toward the DSAW fixed 
point, since for large and positive f~ the recursion relation reduce to the 
corresponding relations on the directed sublattice obtained by keeping only 
the shortest paths (this is true both for the finite and zero-temperature 
recursion relations). The large limit L with # -  #c fixed thus corresponds to 
DSAWs. 

The first consequence is that the free energy is extensive, as was 
demonstrated in refs. 23 and 24, and that 

f ( # )  = lim L -1 log ZL(#, e) 
L~oo  

exists and is independent of the environment e for # > #c. We thus begin 
by showing that, as a consequence of a scaling assumption, the free energy 
of a SAW in a quenched random environment has a singularity 

f (#)s ing ~ ( ] 2 -  #c) v' at the critical fugacity # = #c with 

1--CO 
v ' -  - -  (7.1) 

1 / ~  - c o  

an expression which reduces to v '=  v----ff for the pure case, co = 0, of a 
SAW or DSAW (if-~ll = 1). 

Let us first recall the ustml scaling argument for the pure SAW. As is 
well known, 

Z ( L , N ) ~ N  ~ l Coaexp(#~ F(LN-~~  

Upon performing the Laplace transform over N and neglecting the 
power-law corrections, one deduces the scaling form log Z L ( # ) ~  
f [ ( # -  #c)L1/:~ �9 Since the free energy has to be extensive ~ L  (an obvious 
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fact on hierarchical lattices, first demonstrated on Euclidean lattice in 
ref. 38), one must have 

fsmg = lim L -1 log Zc(i t)  ~ (it - Its) c~ 
L ~ c ~  

This is the equivalent of the hyperscaling relation in an ordinary ther- 
modynamic system. Note that the inclusion of power-law corrections does 
not modify this result (see ref. 38). 

In the strong-disorder regime of the SAW in a random environment 
one expects log Z(L ,  N)  to have a wide distribution, which we symbolically 
write 

log Z(  L, N) ~ L~~ N L -  1/~, e] (7.2) 

which means that the distribution of L-~ log Z with respect to the con- 
figuration e depends on N and L only through the scaling variable NL-1/~. 
Although it is more difficult here to make a precise argument, it is clear 
that upon Laplace transform over N, the saddle point will satisfy 

( i t -  itc) N,,~ U ~ 

in the scaling region, which shows that at a strong-disorder fixed point 
( i t - i t c )  does not scale like N -1. Instead, from (7.2) we find the scaling 
form 

log Z(  L, It, e ) ~  L~ ( i t -  itr L 1/~, e] (7.3) 

with 1/v = 1 /~ -  co, in agreement with the analysis of Section 3 leading to 
the identification of the exponent v, and with the exact analysis in d =  1. 
Indeed one can expand (7.3) around It = Itc and find 

log Z(L ,  It, e ) =  log Z(L ,  Itc, e) + a(e)(it - Itc) L ~/c + "'" 

with log Z(L ,  Pc, e) ~ c(e) L ~ and .~(L, e) ,-~ a(e) L 1/~. Now the requirement 
of extensivity for large L implies the result (7.1) for the free energy 
singularity exponent. Note that the distribution of L -1 log Z(L ,  It, e) goes 
to a delta function independent of e. 

One can go further and use a matching condition from the SAW onto 
the DSAW fixed point. Let us call r = L ( i t - # c )  ~ the scaling variable 
entering (7.3) and suppose that for large r, the distribution of 
g = L - ~ ~  Z(it, L, e) goes to a fixed distribution of width ,-~r v centered 
around g = go ~ cr", where u and v are two exponents to be determined by 
matching. Since we know that at the fixed point for the DSAW 
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l o g Z ~ f L + b ( e ) L  ~'', one must have u + ~ o = l  and v+co=e~', which 
implies that the free energy of the SAW has the asymptotic scaling form: 

log Z(L ,  #, e) ~ L ( #  -- # y '  + d(e) L~"(I ~ - #~)v(o~, ~o~ + . . .  

where d(e) is of order unity and has a fixed distribution. 
Note that the above analysis is valid everywhere in the domain of 

strong disorder, e.g., outside the immediate vicinity of the pure fixed point 
(or the weak-disorder phase). More precisely, when small disorder is 
relevant, it is valid for ( # - # ~ ) ~ A  ;~/~, where 2 is the eigenvalue of the 
disorder at the pure fixed point and A its strength. 

Note that on a hierarchical lattice on the other side of the transition 
(/~-#~) <0  one has the directed problem of the longest possible paths; 
thus v' is unchanged, but the exponent of the fluctuations v(~o'-e~) is 
changed since ~o' is changed. 

7.2. S A W  Submit ted  to a Stretching Force and 
Blob Arguments  

As is well known, one can give simple "blob" arguments to describe 
the behavior of a self-avoiding walk in the presence of a small stretching 
force F acting on its free end. The SAW is unperturbed on scales 
smaller than Lo defined by F L o ~  T= 1. The SAW can be seen as 
composed of blobs themselves forming a pure DSAW, and thus 
L =  ( N / N o ) L o , - ~ F  1+1/~~ Note that the same result is obtained by 
balancing the stretching energy (L/NC~ 1/~1 ~o) with FL. 

In the presence of disorder, the SAW in the strong-disorder regime is 
unperturbed by the stretching force F,~ 1 on scales smaller than L1, where 
FL~ ~ N ~ L ~ .  This is because temperature is irrelevant and only free 
energy fluctuations are important. This gives L~ = F  -1/(1 co) (>>Lo, which 
is replaced by L1). On length scales larger than L 1 the SAW has the shape 
of a directed string of blobs of size L1 along the direction of F. Then, the 
properties of the DSAW can be used. Thus, L , , ~ ( N / N 1 ) L 1  with 
N~ ,,~ LI~/;~ F i/(~-z), which gives for the extension of the DSAW along the 
direction of the force 

L ~ N F  (1 - ~ ) / ( ~  - z )  

The free energy f of the stretched SAW and its typical fluctuation A f  can 
also be estimated by the same blob arguments. The free energy i s f~  FL 
and the fluctuation A f  is given by the free energy fluctuations of a DSAW 
of N / N  1 steps; with a renormalized disorder strength L~ at the scale L1 we 
find 

f ~ NF(a z)/(~- z~, A f  = NZ'F(X ' z)/(~- x~ 

8 2 2 / 6 4 / 3 - 4 - 7  
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7.3. N e w  A r g u m e n t  for  Exponent Relation for  the D S A W  

Clearly the above argument must itself apply to a directed walk. 
Suppose the DSAW is directed in the t direction (eventually as a result of 
applying a large force to an isotropic SAW) and one applies an additional 
small force F in the x direction to the head of the polymer. Then, from the 
blob argument one has x ~ t F  ( a - ~ / ( ~ l  z). But applying those two forces is 
like applying to an isotropic system a total force in the direction making 
a small angle ~ F with the t axis. From linear response (e.g., the fact that 
the displacement must be along the direction of the total applied force) this 
implies x / t  ~ F and thus we find 

Z=2~•  - 1 

This seems to be a new argument for justifying the exponent relation, 
which seems to rely on linear response and rotational invariance. Note that 
one finds f = N F  2, which is also natural, since f should be even in F. 

Finally, note that tile elasticity relation (6.5) amounts to the 
hypothesis that the response exponent ~o such that L ~ F ~' is the same for 
a SAW with disorder as for the pure SAW. 

8. C O N C L U S I O N  

We have studied the problem of self-avoiding walks in a quenched 
random environment. We have investigated SAWs on hierarchical lattices 
using an exact renormalization group method and shown that this problem 
is controlled by a strong-disorder fixed point in low dimension or for 
sufficiently large disorder. The existence of a strong-disorder fixed point 
on hierarchical lattices strongly suggests that similar behavior holds on 
Euclidean lattices, in agreement with conclusions (7~ based upon runaway 
trajectories in the field theory describing SAWs in random environments. 
The strong-disorder fixed point is characterized by two new exponents, 
and co. We find that the size exponent ~ for "two-dimensional" hierarchical 
lattices is slightly larger than the corresponding pure exponent on the same 
lattice. It remains an open question whether ~ equals 3/4 for a disordered 
two-dimensional Euclidean lattice as suggested by recent simulations (1~ or 
whether ~ is slightly larger than 3/4. 

In addition to accurate values of the exponents on hierarchical lattices, 
we have obtained more general relations and bounds based upon the 
supposition of a strong-disorder fixed point. We find that 1/~ - co ~< d/2  and 
that the quenched critical fugacity is strictly greater than the annealed critical 
fugacity. 

We have obtained a variety of estimates for ~ and co based upon 
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d imens iona l  analysis,  scaling arguments ,  and  analogies  to di rected walks. 
These es t imates  are of  the form tha t  ~ and  co are simple funct ions of the 
d imens ion  and  the pure  exponent  ~o- All of these approaches  predic t  ~ ~> ~0 
and  1 / 2 > c o  > 0  in the range 1 <  d < 4 ;  however,  it is difficult to judge  
which is closer to cap tur ing  the key features of the problem.  It  m a y  be that  
the val id i ty  of  the a p p r o x i m a t e  me thods  can be tested by numer ica l  s imula-  
t ions of  the exponen t  co, since the different app roaches  yield ra ther  different 
values of this exponent .  
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